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1. Introduction 

The Delaunay triangulation is one of the most 
fundamental concepts in computational geome- 
try, and has many applications in engineering 
such as finite element analysis, computer graphics 
and interpolation. From a theoretical point of 
view, the properties of the Delaunay triangula- 
tions have been well studied in both two and 
three dimensions, and many efficient algorithms 
exist [1,2,14,16]. 

From a practical point of view, however, we 
still have serious problems, because in actual 
computers arithmetic is carried out only in finite 
precision, and algorithms often fail due to incon- 
sistency caused by numerical errors. Indeed, the 
same difficulty arises in many geometric algo- 
rithms [7]. 

Various approaches have been proposed to 
numerically robust geometric algorithms. They 
include the exact-arithmetic approach [11,18,191 
(often together with the symbolic perturbation 
technique [4,5,23]), the tolerance-based approach 
[6,13], the axiomatic approach [10,17], and the 
combinatorial-abstraction approach [8,9,20,21]. 

* Corresponding author. 

Among them we have been studying the combina- 
torial-abstraction approach extensively, because 
this approach enables us to separate the inconsis- 
tency issue completely from the error analysis 
issue and consequently the design and analysis of 
algorithms is simpler than in other approaches. 

Studying the Delaunay triangulation on the 
basis of this approach, we found a somewhat 
strange fact: in the two-dimensional space the 
construction of the Delaunay triangulation is al- 
most equivalent to the construction of the 
Voronoi diagram, whereas in the three-dimen- 
sional space the Delaunay triangulation is much 
more difficult to construct than the Voronoi dia- 
gram. This is mainly due to the difference of the 
degeneracy in two and three dimensions. 

This paper shows why the three-dimensional 
Delaunay triangulation is difficult to construct 
and presents a way to avoid this difficulty. 

2. Delaunay triangulation 

Let P = b1, P2, a.. , p,} be a finite set of dis- 
tinct points in Rd; in this paper we are interested 
in only d = 2 or 3. Let CH(P) denote the convex 
hull of P. If S is a maximal subset of P such that 
all the points in S are on a common sphere 
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(circle for d = 2) and if this sphere contains no 
element of P in its interior, the convex hull 
CH(S) of S is called a Delaunay polytope (De- 
launay polyhedron for d = 3 and Delaunay poly- 
gon for d = 2). The convex hull CH(P) is parti- 
tioned into the Delaunay polytopes and their 
boundaries. A Delaunay polytope is said to be 
nondegenerate if it has exactly d + 1 vertices, and 
degenerate otherwise. If all the Delaunay poly- 
topes are nondegenerate, we say that P is nonde- 
generate. 

plices are adjacent to each other if their bound- 
ary share a common Delaunay facet. 

3. Incremental construction 

First, suppose that P is nondegenerate. Then, 
all the Delaunay polytopes are d-simplices (i.e., 
tetrahedra for d = 3 and triangles for d = 2). The 
convex hull CH(P) is partitioned into d-simplices 
and their boundaries. This partition is called the 
Delaunay triangulation and is denoted by Del(P). 

Let us fix finite set P of points in Rd. A sphere 
(or a circle for d = 2) is called an empty sphere if 
it contains no element of P in the interior. A 
d-simplex with the vertices in P can be a Delau- 
nay simplex if and only if the circumscribing 
sphere is empty. From this property, we can 
consider an incremental method for constructing 
the diagram. 

Next, suppose that P is degenerate. Then, 
some of the Delaunay polytopes are not sim- 
plices. We decompose these polytopes into d- 
simplices in an arbitrary manner, and thus obtain 
the partition of CH(P) into d-simplices and their 
boundaries. This partition is also called the De- 
launay triangulation and is denoted by Del(P). 

Note that Del(P) is unique if and only if P is 
nondegenerate. We call the d-simplices in Del(P) 
the Delaunay simplices, and the Cd - l>- 
dimensional faces (i.e., edges for d = 2 and trian- 
gles for d = 3) of the Delaunay simplices the 
Delaunay facets. We say that two Delaunay sim- 

In the incremental method, we start with the 
Delaunay triangulation for a few generators, and 
modify it by adding new generators one by one. 
As shown in Fig. l(a), suppose that we have 
already constructed Del(P) and that we want to 
add new generator p (6 P). Delaunay simplex T 
is said to be inconsistent with p if the sphere 
circumscribing T contains p in the interior, and 
consistent otherwise. For simplicity let us assume 
that p E CH(P), as shown in Fig. l(a). Then, we 
can construct Del(P U {p}) in the following way 
[221. 

First, we find all Delaunay simplices inconsis- 
tent with p, and delete them from Del(P). For 
the example in Fig. l(a), we have four inconsis- 
tent Delaunay simplices, and removing them, we 

(4 (b) 
Fig. 1. Incremental construction: (a) Delaunay triangulation and a new generator; (b) retriangulation. 
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have a large connected region. Next, we decom- 
pose this region into simplices with the apex at p, 
as shown in (b); thus we get Del(P U (~1). 

This procedure can be represented naively in 
the following way. 

Algorithm 1 (naive method) 
1. Find all Delaunay simplices inconsistent with 

p, and name their union the region R. 
2. Remove all the Delaunay simplices in R. 
3. Decompose R into simplices with the apex at 

p and with the base facets on the boundary of 
R. 

This algorithm is valid if computation is done 
precisely and if P U {p} is non-degenerate, but is 
not necessarily otherwise. To see this, let us place 
the next assumption on the behavior of numerical 
errors. 

Assumption 1. If p is not on the circumsphere of 
Delaunay simplex T, consistency of T with p is 
judged correctly. If p is exactly on the circum- 
sphere of T, however, the judgement of the con- 
sistency is done at random. 

This assumption simulates the situation where 
numerical error takes place but the amount of 
numerical error is small. 

Suppose that we have constructed the two-di- 
mensional Delaunay triangulation for seven gen- 
erators ply p2,. . . , p7, as shown in Fig. 2(a), 
where six of them are on common circle C, and 
also suppose that we want to add new generator 
p that is also on C. In Assumption 1, it can 
happen that the four Delaunay triangles repre- 
sented by the shaded areas in Fig. 2(a) are judged 
inconsistent with p while the other triangles are 
judged consistent. Then, Algorithm 1 removes 
them and generates new simplices as shown by 
broken lines in Fig. 2(b). The result is inconsis- 
tent because simplices overlap each other. Thus, 
Algorithm 1 fails easily. 

Fortunately, however, we usually do not use 
Algorithm 1 because it is time consuming. In Step 
1 of Algorithm 1 we have to check all the Delau- 
nay simplices. On the other hand, we know that 
all the inconsistent Delaunay simplices form a 
connected region containing p. Hence, in order 
to avoid time consuming check, we usually follow 
the next algorithm, which is different from Algo- 
rithm 1 in Steps 1 and 2 [12]. 

Algorithm 2 (textbook method) 
1. Find the Delaunay simplex including p, and 

name it the region R. 
2. Until R cannot be augmented any more, do: 

if there is Delaunay simplex T adjacent to R 

(b) 
Fig. 2. Inconsistency in the two-dimensional Delaunay triangulation: (a) degenerate Delaunay triangulation and a new generator; 
(b) overlapping triangles obtained by Algorithm 1. 
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and inconsistent with p, remove the Delaunay 
facet separating T and R, and thus augment 
the region R. 

3. Decompose R into simplices with the apex at 
p and with the base facets on the boundary of 
R. 

In Step 2 of this algorithm we check only those 
Delaunay simplices that are adjacent to R. This, 
on the one hand, guarantees efficiency in compu- 
tational time, and, on the other, guarantees con- 
sistency in the topological structure. Indeed, for 
the Delaunay triangulation in Fig. 2(a), the trian- 
gle p1p2p3 is initially set as R, and then the 
triangle p2p3p7 is merged to R, but the triangle 
p4p6p7 or p4p5p6 is not merged to R because 
they are not adjacent to R. 

4. Difficulty in three dimensions 

Algorithm 2 works well in two dimensions, but 
does not in three dimensions. The following is an 
example in which Algorithm 2 generates overlap- 
ping tetrahedra. 

Suppose that eight generators p,,, ps, pl, 
pz, . . . , p6 are on the boundary of an empty 

sphere; let pn be at the north pole, ps be at the 
south pole, and pl,. . . , p6 be circularly placed on 
the equator in equal space. This situation is de- 
picted in Fig. 3(a), in which the sphere is seen in 
the direction parallel to the line passing through 
the north and south poles, and hence the circle in 
this figure corresponds to the equator and the 
center corresponds to the north and south poles. 
Assume that other generators exist outside the 
sphere, though they are omitted in this figure. 

Suppose that Del(P) contains tetrahedra 
p,pspipi+l (i = 1, 2 ,..., 6) where p, is read as 
pl. Now assume that new generator p is given on 
the shorter arc of the equator connecting p1 and 
pz. Then, p is exactly on the sphere that circum- 
scribes the tetrahedra pnpspipi+l (i = 1, 2,. . . ,6). 
Hence, in Assumption 1, whether or not the 
Delaunay tetrahedron p,, p, pi pi + 1 is consistent 
with p is judged at random. Therefore, it may 
happen that the tetrahedron pnpsp6p1 is judged 
consistent, and all the other five tetrahedra are 
judged inconsistent. 

Then Step 2 of Algorithm 2 generates the 
region R as shown by the shaded area in Fig. 
3(a), and Step 3 of Algorithm 2 generates over- 
lapping tetrahedra as shown in Fig. 3(b); for 
example, tetrahedra pnpsp, p6 and ppn psp6 

(4 (b) 
Fig. 3. Inconsistency in the three-dimensional Delaunay triangulation: (a) degenerate Delaunay triangulation and a new generator; 
(b) overlapping tetrahedra obtained by Algorithm 2. 
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overlap. Thus, Algorithm 2 is not stable in the 
three-dimensional space. 

In order to avoid overlapping tetrahedra, the 
region R generated in Step 2 of Algorithm 2 
should be star-shaped. Indeed, if P is not degen- 
erate, the region R is star-shaped [2,3,14]. Hence, 
we should modify Algorithm 2 in such a way that 
the region R is guaranteed star-shaped even if P 
is degenerate. 

quently, how to translate algorithms in textbooks 
into numerically robust computer programs is an 
important and nontrivial problem. This paper has 
concentrated on the incremental construction of 
the Delaunay triangulation, and filled the gap 
between the textbook algorithm and the practical 
computer program. 

Now that we understand how the difficulties 
arise, it is not hard to avoid it. To this end, we 
make the inconsistency test in the order that the 
Delaunay tetrahedra closer to p are checked 
earlier, and once we judge a tetrahedron consis- 
tent, we also judge that all the tetrahedra behind 
it are necessarily consistent. By this trick we can 
avoid overlapping tetrahedra. Thus we get the 
next algorithm, which differs from Algorithm 2 
only in Step 2. 

Algorithm 3 (stable method) 
1. Find the Delaunay simplex including p, and 

name it the region R. 
2. Until R cannot be augmented any more, do: 

if there is Delaunay simplex T such that 
6) the line segments connecting p to the ver- 
tices of T are contained in R U T, and such 
that 

The difficulty we discussed in this paper usu- 
ally does not appear when we construct the 
three-dimensional Voronoi diagram, i.e., the dual 
of the Delaunay diagram. Consider again the 
collection of overlapping tetrahedra shown in Fig. 
3(b). If we take the dual of this structure, we 
obtain the collection of polyhedra, i.e., Voronoi 
polyhedra, whose facets are on the planes per- 
pendicularly bisecting two points in P. Note that 
the points in P are on a common sphere and 
consequently all the bisecting planes go through 
the center of the sphere. Actually, the Delaunay 
edges penetrating other tetrahedra in Fig. 3(b) 
correspond to very tiny Voronoi facets at the 
center of the sphere, and the resulting collection 
of the Voronoi polyhedra form an almost correct 
partition of the space. In this sense, the construc- 
tion of the Delaunay triangulation is more diffi- 
cult than the construction of the Voronoi dia- 
gram in three dimensions. 

(ii) T is inconsistent with p, 

then, remove the Delaunay facet separating T 
and R, to augment the region R. 

3. Decompose R into simplices with the apex at 
p and with the base facets on the boundary of 
R. 

In Assumption 1, this algorithm never gener- 
ates overlapping tetrahedra. This is because the 
condition (i) in Step 2 guarantees that the region 
R is always star-shaped with respect to p, i.e., all 
the facets on the boundary of R are visible from 
p when we consider the simplices not belonging 
to R are opaque. 

The Delaunay triangulation for IZ points in 
three dimensions can have as much as 0(n2> 
Delaunay tetrahedra [14], and hence the worst 
case time complexity is not smaller than O(n*). 
However, we empirically know that in many cases, 
including the case where the points are generated 
randomly in a cube, the number of Delaunay 
tetrahedra is of O(n). In these cases, we also 
know from experience that if the bucketing tech- 
nique is used for finding the Delaunay simplex 
that contains p, Algorithm 3 runs in O(1) time on 
the average, and consequently the Delaunay tri- 
angulation can be constructed in O(n) time on 
the average. See [15] for the details of employing 
the bucketing technique. 
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