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Abstract--Let S denote a set ofn points in the plane such that each point p has assigned a positive weight w(p) 
which expresses its capability to influence its neighbourhood. In this sense, the weighted distance of an 
arbitrary point x from p is given by de(x, p)/w(p) where d e denotes the Euclidean distance function. The 
weighted Voronoi diagram for S is a subdivision of the plane such that each point p in $ is associated with a 
region consisting of all points x in the plane for which p is a weighted nearest point of S. 

An algorithm which constructs the weighted Voronoi diagram for S in O(n 2) time is outlined in this paper. 
The method is optimal as the diagram can consist of ®(n 2) faces, edges and vertices. 

Voronoi diagram Weighted points 
construction Concrete complexity 

Geometric transform Cell complex Incremental 

I. INTRODUCTION 

Let S denote a finite set of points in the Euclidean d- 
dimensional space. The Voronoi diagram of S is a well- 
known structure which makes explicit some proximity 
information about S. The broad scope of applications 
of the diagram is best documented by the various 
rediscoveries of the Voronoi diagram in different areas 
of science. As far as we know Voronoi t tl was the first to 
look at the diagram for examining quadratic forms. 
Later, the diagram was used for applications in 
physics, ~2) in geography, t3~ in vision and biology, 1'*'51 in 
archeology t61 and other areas. Shamos tT~ and Shamos 
and Hoey tsl introduced the two-dimensional Voronoi 
diagram to computational geometry and demon- 
strated an efficient algorithm for constructing it. 
Efficient algorithms for three- and higher-dimensional 
point-sets follow from the results in Seidel tg) and the 
close relationship between Voronoi diagrams in d 
dimensions and convex hulls in d + 1 dimensions (see 
Brownt|°t). 

Also, generalizations of the diagram were con- 
sidered by several authors. Shamos and Hoey ~H~ intro- 
duced Voronoi diagrams of higher order and Drys- 
dale and Lee, ~1 as well as Kirkpatrick, "21 looked 
at diagrams for more general objects than points. 
This paper concentrates on a different generalization 
by assigning to each point p of the given set a positive 
weight w(p) which expresses the power ofp to influence 
its neighbourhood. Original Voronoi diagrams are the 
special case where all points are equally powerful. The 
new structure is called the weighted Voronoi diagram 
of a set of weighted points. This concept of weighting 
the points has already been considered in Boots, t~3~ 

who concentrated on applications in geography. Our 
major interest is in the two-dimensional case. Thus, let 
S denote a finite set of points in the Euclidean plane. 
The weighted distance dw(x, p) between an arbitrary 
point x in the plane and a point p in S equals 
de(x, p)/w(p), d e denoting the Euclidean distance func- 
tion. The weighted Voronoi diagram of S (for short 
WVD(S)) is a subdivision of the plane consisting of 
faces, edges and vertices. Let region(p) denote the 
region (of it~fluence) of a point p in S, i.e. 

region(p) = {xldw(x,p) < dw(x,q), q in S}. 

A face of the WVD(S) is a connected component of the 
interior of a thus defined region. An edge is the relative 
interior of the intersection of two closed faces, and a 
vertex is an endpoint of an edge (see Fig. 1 for an 
illustration). Clearly, if the regions of two points p and 
q have a non-empty intersection, then this intersection 
is a subset of the curve defined by the WVD-equation 

dw(x, p) = dw(x, q) 

for p and q. 
The practical relevance of the planar WVD was 

reported in Boots, ~ 3~ who refers to Gambini et al., ~14~ 
Huff and Jenks ~ t  and Huff ~61 for the majority of 
applications of the WVD. To aid the intuition of the 
reader, let us describe briefly two practical situations 
where the planar WVD comes in. 

In some geographic area of interest we consider a 
collection of concurrent shops. Each shop has assigned 
to it some number to express its power of attracting 
customers. Big shops with a large variety of articles 
usually attract customers with more power than small 
shops. Nevertheless, a small shop will realize the 
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dominating attraction in its near neighbourhood. The 
WVD for the shops seems to capture this information 
in an appropriate way and to make explicit the area of 
dominating attraction for each shop. 

Another problem leading to the same model in- 
volves a set of transmitters with varying strength. It is 
of interest to determine for some arbitrary given point 
x the transmitter which is received best in x or to 
construct the region of points in which a transmitter p 
is received best among some finite collection. Underly- 
ing these questions is the physical assumption that a 
transmitter p with strength w(p) is received with 
strength w(p)/de(x,p) 2 at a point x. Although the 
influence of a transmitter thus decreases with the 
square of the distance, again the WVD for the 
transmitters captures the weighted proximity infor- 
mation. This was observed by Schoone and van 
Leeuwen, 1171 who examined the case of only two kinds 
of transmitters, the transmitters of one kind having the 
same strength. 

The organization of this paper is as follows. Section 
2 discusses some properties of the two-dimensional 
WVD relevant for constructing it. Section 3 introduces 
a geometric transform which embeds the two- 
dimensional WVD in three dimensions. The algorithm 
for constructing the WVD is outlined in Section 4. 
Finally, Section 5 reviews the main contributions ofthe 
paper and discusses several extensions of our results. 

2. SOME PROPERTIES OF THE 
TWO-DIMENSIONAL WVD 

The primary concern of this section is the dem- 
onstration of some basic properties of the WVD in the 
plane. 

Observation 2-I.  Let S = {p,q} consist of two 
weighted points in the plane and let w(p) < w(q). Then 
the region of influence of p is the closed disc with center 

(w2(p) P - w2(q) q)/(w2(p) - w2(q)) 

and radius 

(w(p) w(q)de(p, q))/(w2(p) - w2(q)). 

The region of influence ofq is the closed complement of 
this disc. 

The above formulae are derived from the WVD- 
equation for p and q. Observe that the ratio w(p)/w(q) 
determines the disc rather than the individual weights 
of p and q themselves. For convenience, we call the 
circle which is the intersection of both regions of 
influence the separation of p and q, for short sep(p, q). 
The closed interior of sep(p, q) is termed the dominance 
of p over q, for short dom(p,q), and the closed 
complement of dom(p,q) is termed dom(q,p). These 
definitions are easily extended to the case w(p) = w(qk 
where the separating circle degenerates to a line. 
Without loss of generality, we will draw no distinction 
between circular or spherical objects and their affine 
degeneracies. 

Observation 2-2. Let S denote a finite set of weighted 
points in the plane and let p be in S. Then 

region(p) = (~ dom (p, q). 
q~s- {p~ 

It is clear that the regions of a set S of weighted 
points cover the whole plane, since for each point x of 
the plane there is at least one weighted nearest point in 
S. The intersection of two regions of influence is a circle 
or part of a circle. Thus, the WVD(S) is a subdivision of 
the plane with circular edges. If a point x falls into a 
face of the subdivision then there is a unique weighted 
nearest point. If x is on an edge then there are two 
weighted nearest points. Finally, if x is a vertex then 
there are at least three. Figure 1 shows the WVD of a 
set of 8 points and contains 9 faces, 16 edges and 9 
vertices. The weights of the points are in parentheses. 

The above discussion, as well as easy analytic 
calculations, imply observation 2-3. 

Observation 2-3. Let p, q and r denote three 
weighted points in the plane. Then there are at most 
two points common to sep(p, q), sep(q, r) and sep(p, r) 
and a point common to two of them is common to all 
three. 

The example depicted in Fig. 1 reveals some un- 
pleasant properties of the diagram: the region of a 

P ~ ( 7 )  

Fig. l. The WVD 



Wcighlcd Voronoi diagram 253 

point need neither be connected nor need its connected 
parts be simply connected (see, for example, the region 
ofp3 ). Needless to say, the faces need not be convex nor 
need the collection of edges form a connected 
component. 

Lemma 2 4. Let S denote a set ofn weighted points 
in the plane. Then the WVD(S) contains ~(n 2) faccs, 
edges and vertices in the worst case. 

Proof. We show the assertion by exhibiting an 
example which is realizable for all positive integers n. 
[n/2J of the points in S are chosen collinear and with 
identical weights. These points induce a diagram 
consisting of [n/2J - 1 parallel lines. The remaining 
['n/2] points are chosen such that : (1) no two regions of 
them share an edge; (2) their regions are convex ; (3) 
each of these regions shares an edge with each region of 
the former In/2] points (see Fig. 2). It is readily seen 
that it is possible to choose the latter points such that 
(1), (2) and (3) hold and there are ®(n 2) faces, edges and 
vertices in the resulting diagram, which completes the 
argument. 

An obvious question is whether or not the given 
bound is asymptotically tight. This question is settled 
in the affirmative by the following assertion. The proof 
is given in Section 3. 

Lemma 2 5. Let Sbe a set ofn weighted points in the 
plane. Then the region of a point p in S is bounded by 
O(n) edges. 

As an immediate consequence of Lemma 2-5 the 
WVD(S) contains at most O(n z) edges and thus O(n 2) 
faces and vertices. 

3. E M B E D D I N G  THE WVD IN T H R E E  D I M E N S I O N S  

A geometric transform is described in this section 
which leaves us with a three-dimensional problem, in 
some aspects preferable to constructing the planar 
WVD directly. Intuitively, each weighted point is 
associated with a point and a convex polyhedron in 
three dimensions, such that the region of the original 
point can be obtained by transforming the intersection 
of the polyhedron with a sphere. The geometric 
transform employed was first used by Brown ~t°~ for 
solving a variety of other geometric tasks. 

The plane which contains the given set S of weighted 
points is identified with the X Y-plane in three dimen- 
sions. Next, a point 1 not in the XY-p!ane is dis- 
tinguished. Let p and q denote two points in S and re- 
call that p and q deline a circle sep(p, q). There exists 
a unique sphere, called the sphere ofp and q (for short 
sph(p,q)), whose intersection with the XY-plane is 
exactly sep(p,q) and which contains I (see Fig. 3). 
Without loss of generality, let w(p) < w(q) such that p 
is inside of sph(p,q). Then the closed interior of 
sph(p, q) is called the spherical domination of p over q 
(for short sdom(p, q)). Similarly, the closed complement 
of sdom(p, q) is termed sdom(q, p). Now we define the 
spherical re qion of p (for short sregion(p)) as the 
intersection of all sdom(p, q), for q in S different from p. 

Trivially, two spherical regions intersect at most in a 
two-dimensional variety. Now the question arises 
whether or not the spherical regions define a partition 
of the whole space. This is settled in the affirmative as it 

• (4) 
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Fig. 2. Worst-case configuration for n = 8. 

Fig. 3. The spherical domination. 
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is an immediate consequence of the following lemma. 
We omit the proof since it can be done by straightfor- 
ward calculations. 

Lemma 3-I.  Let p, q and r denote three weighted 
points in the X Y-plane and let x be an arbitrary point 
in the intersection ofsdom(p, q) and sdom(q, r). Then x 
is also in sdom(p, r). 

Now the geometric transform often called inversion 
is applied to the spherical partition of the three- 
dimensional space. We choose I for the center of 
the inversion and map each point x whose distance 
from I is de(x, I) into the point x' collinear to x and I 
such that de(x', I) = 1~de(x, I). Simple geometric argu- 
ments show that a plane is thus mapped into a sphere 
containing I and vice versa (see, for example, 
Browntt m). Note that the spheres defined for the points 
in S are thus mapped into planes and the spherical 
dominations are mapped into closed halfspaces. 
Moreover, the spherical regions of the points in S are 
mapped into polyhedra which are convex since they 
come from intersecting halfspaces. Lemma 3-1, which 
implies that the spherical regions define a partition of 
the space, thus implies that the polyhedra do the same. 
We call the polyhedron which is obtained by inverting 
sregion(p) of some point p in S as the polyhedron of p, 
(for short poly(p)). Trivially, the inverted point p' ofp is 
contained in the interior of poly(p). 

Recall that the WVD(S) is the intersection of the 
partition defined by the spheres of the points and the 
XY-plane. Thus, the WVD(S) is mapped by inversion 
into the intersection of the partition defined by the 
polyhedra of the points in S with the sphere cor- 
responding to the X Y-plane. As the inversion is 
involutory, the WVD(S) can be obtained by re- 
inverting the latter intersection. With these correspon- 

dences in mind it is easy to prove Lemma 2-5 of the 
preceding section. 

Proof of Lenm~a 2 5. The region of a weighted point 
p in the WVD(S) is the inverted picture of the in- 
tersection of poly(p) with the sphere corresponding to 
the X Y-plane. By definition of region(p), poly(p) is the 
intersection of n-1 halfspaces. Thus poly(p) has O(n) 
faces, edges and vertices and the intersection ofpoly(p) 
with a sphere consists of 000 faces, edges and vertices 
on this sphere. The assertion follows from the fact that 
inverting does not change the number of faces, edges 
and vertices involved. This completes the argument. 

The presented correspondences reveal the idea of 
our algorithm for computing the WVD(S), which is 
constructing the cell complex consisting of the poly- 
hedra of the points in S, intersecting the cell complex 
with the sphere corresponding to the X Y-plane and 
finally inverting this intersection. Figure 4 gives an 
illustration of the correspondence between the two 
intersections. It displays the region of a weighted point 
in the XY-plane, as well as the intersection of its 
polyhedron and the sphere corresponding to the X Y- 
plane. 

4. CONSTRUCTING THE WVD 

In this section an algorithm is outlined which 
constructs the WVD of a given finite set of weighted 
points in the plane. The major part of the algorithm 
constructs the cell complex C(S) which consists of the 
polyhedra of the weighted points. We discuss the 
construction of C(S) first and come back to the WVD 
later. 
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Fig. 4. The three-dimensional embedding. 
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The cells tfC(S) are the interiors of the polyhedra of 
the weighted points in S. A face ofC(S)is the relative 
interior of the intersection of two closed cells, an edge 
of C(S) is the relative interior of the intersection of two 
closed faces and a vertex of C(S) is the intersection of 
two closed edges. A cell and a face (or a face and an 
edge or an edge and a vertex) are called incident if the 
closure of the cell (or face or edge) contains the face (or 
edge or vertex). 

Out of a number of possibilities to store C(S) we 
choose the incidence lattice of C(S), which consists of a 
name for each cell, face, edge and vertex of C(S) and 
connects incident objects (see Gruenbaum t~a~ for cell 
complexes in general and the incidence lattice in 
particular). Note that this representation, which is also 
used in Seidel, tg~ reflects little of the ordering inherent 
in C(S). To remedy this serious shortcoming we store 
the edges incident with a face in the natural ordering 
around the face. Similarly, the faces incident with an 
edge are stored in order. In addition, pointers are 
established such that given a facefand an incident edge 
e, the adjacent two edges incident with f and the 
adjacent two faces incident with e are available in 
constant time. It is worthwhile to mention that storing 
the coordinates of the vertices or the positions of the 
planes determining the faces suffices to fix the cell 
complex in space. 

The incidence lattice allows for an efficient algor- 
ithm to intersect a cell c in the complex with a plane pl. 
This is demonstrated in the following, where it is 
assumed that an edge eo ofc and a face f0 of c, incident 
with co, which intersect pl are known. For simplicity, 
we also assume that pl contains no face, edge or vertex 
ofc. These cases can be incorporated without affecting 
the asymptotic runtime. The algorithm constructs the 
cyclic sequence of edges and vertices defining the 
intersection ofc and pl. With each edge or vertex x, the 
face or edge y of c is associated such that x is the 
intersection ofy and pl. These details are omitted in the 
description of the algorithm. 

Algorithm CELL-PLANE 

Let e: = e o be the current edge and let f :  = f0 denote 
a face of c incident with e. 

Step I. Scan the edges aroundfwhich are below pl, 
say, until an edge e' different from e is encountered (if it 
exists) which intersects pl. 

Case 1.1. e' exists. Then the process is finished if e' 
= e0. Otherwise, let f '  be the face of c different fromf 
and incident with e. Set e : = e' and/ :  = f '  and repeat 
Step 1. 

Case 1.2. e' does not exist, which is only possible iffis 
unbounded. If this case occurs the second time then the 
process is finished. Otherwise set e: = eo and let the 
face f of c be different from fo and incident with e. 
Repeat Step 1. 

Lemma 4-1. Let c be a cell and let pl be a plane. If an 
edge eo of c and an incident facefo of c intersecting pl 

are given, then Algorithm CELL-PLANE intersects c 
and pl in time O(n + h), where n denotes the number of 
edges of c intersecting pl and h denotes the number of 
edges of c on some fixed side of pl. 

We omit the proof since the algorithm is extremely 
simple. Care is only required for verifying that the 
presentation of c as a cell in a cell complex allows the 
scanning in constant time per step. Using Algorithm 
CELL-PLANE we construct the cell complex C(S) for 
a set S of n weighted points in the X Y-plane. To this 
end, we call the inverted picture ofsph(p, q) the plane ~f 
p and q (for short pl(p, q)). Clearly, pl(p, q) can be 
computed in constant time from p and q. The algor- 
ithm to be presented constructs C(S) by successively 
inserting the weighted points. 

Algorithm CELL COMPLEX 

LetS = {p, ..... p,} andlet S, --- IPt ..... pi},for i = l, 
.... n, C(S i) is constructed from C(S i_ ~ ) by intersecting 
the cells in C(Si_ ~) with the planes pl(pi, pj),j = 1 ... . .  
i - 1. Let p* denote a point in Si- ~ which is nearest to 
Pi, i.e. Pi is in poly(p*) in C(Si-i). An edge e o and an 
incident face fo of the cell of poly(p*) which intersect 
pl(p~, p*) are determined. The cell, together with eo and 
fo, are put into an initially empty queue Q and the 
construction of poly(pi) proceeds as follows. 

While Q is not empty the first cell c with its edge e 
and face fa re  taken from Q. Let p denote the point in 
Si-t such that c is the interior of poly(p)in C(Si_ t). 
Now Algorithm CELL-PLANE is used to intersect c 
with pl(pi, p). The side ofpl(pi, p) defined by Pi is chosen 
for the side on which the edge-sequences of c are 
scanned. When a facef' of c is intersected with pl(pi, p) 
then the cell c' different from c which is incident with/" 
is put into Q, unless c' was already put into Q at the 
time poly(p~) was constructed. If c' is put into Q then c' 
is put together with/" and an edge e' incident with/" 
which intersects pl(pi, p). 

At last, when poly(pi) is completed in C(Si) then the 
faces, edges and vertices in the interior of poly(pO are 
deleted from the constructed cell complex. This finally 

gives C(Si). 
Let us analyze the amount of time required by the 

algorithm to construct the cell complex C(S). 
Lemma 4 2. Let S be a set of n weighted points in the 

XY-plane. Then Algorithm CELL COMPLEX con- 
structs C(S) in O(n 2) time. 

Proof We concentrate on the amount of time 
required to construct C(S~) from C(Si_~). The first 
action taken is the determination of p*, i.e. a weighted 
nearest point of Pi. This costs 0(n) time, as does the 
determination of an edge and incident face which 
intersect pl(pi, p*). Then poly(pi) is constructed taking 
O(i + hi) time, where h i denotes the number of edges of 
C(S~_ 1 ) contained in the interior of poly(pi). Deleting 
these h i edges and the O(hi) faces and vertices which are 
also contained in the interior of poly(p~) costs O(hi) 
time. Thus, for successively inserting the weighted 
points p~, for i = 1 . . . . .  n, the algorithm takes 
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O(n 2) + O(h n + ... + h,) time. The latter sum is in 
O(n 2) as each face, edge or vertex deleted has to be 
constructed first. This completes the argument. 

Lemma 4-2 implies the main result of this paper. 
Theorem 4-3. Let S denote a set ofn weighted points 

in the plane. Then there exists an algorithm which 
constructs the WVD(S) in O(n 2) time. 

Proof. The WVD(S)is computed by (1)embedding S 
in the XY-plane, (2) constructing the cell complex 
C(S), (3) intersecting C(S) with the sphere whose 
inverted image is the X Y-plane, and finally (4)invert- 
ing the intersection which yields the WVD(S) in the 
XY-plane.' Step (I) requires O(n) time, Step (2) needs 
O(n 2) time, due to Lemma 4-2, and Steps (3) and (4) 
can obviously be carried out in time proportional to 
the size of C(S). The asserted bound follows which 
completes the argument. 

Due to Lemma 2-4, the presented algorithm is 
asymptotically optimal in the worst case. 

5. DISCUgSION 

Let us first review the main contributions of this 
paper. Most important, an optimal algorithm is out- 
lined which constructs the weighted Voronoi diagram 
of a finite set of points in the plane. To this end, a 
geometric transform which embeds the diagram in 
three dimensions and then inverts it is employed. We 
believe that the optimal algorithm for computing the 
weighted Voronoi diagram is of value to several areas 
of science outside computer science (see Boots°a~). 

Clearly, the technique presented for computing the 
planar diagram is not optimal if applied to the one- 
dimensional case. This shortcoming is not considered 
important as an optimal algorithm is described in 
Aurenhammer t~91 which constructs the weighted Vo- 
ronoi diagram of a set ofn weighted points on a line in 
O(n logn) time. Nevertheless, we conjecture that our 
technique generalizes nicely to three and higher di- 
mensions, where no results are known yet. 

In some situations one might wish to preprocess a 
set S of n weighted planar points such that for a given 
query point x one can easily determine those points in 
S which minimize the weighted distance to x. This can 
be done by constructing the weighted Voronoi dia- 
gram and then superimposing upon it Preparata's c2°' 
structure lor point locatnon search. The region (or edge 
or vertex) x is in (or on) uniquely defines the weighted 
nearest point(s) in S. This yields Theorem 5-1. 

Theorem 5-1. Let S denote a set ofn weighted points 
in the Euclidean plane. Then there exists a data 
structure which requires O(n z logn) space and time for 
construction such that the weighted nearest points in S 
to a query point can be determined in O(logn) time. 

We raise the question whether this search problem 
can be solved with O(n 2) space and O(logn) time for 
answering a query. In addition, exact bounds on the 
number of faces, edges and vertices that a weighted 

Voronoi diagram of n planar points can consist of is of 
vital interest. Methods similar to those used in Sei- 
del (2s) for analyzing the complexity of three- and 
higher-dimensional Voronoi diagrams might be useful 
for answering this question. 

6. SUMMARY 

For a set S ofn points in the Euclidean plane that are 
individually weighted by a positive real constant, the 
weighted Voronoi diagram of S is considered. It 
associates a region R to each point p with weight w(p) 
such that the weighted distance de(x, p)/w(p) between 
the points x in R and p is minimal among the points in 
S. 

The regions are bounded by circular edges and 
define a subdivision of the plane. In general, they are 
not simply connected and even non-connected. There 
are O(n 2) components in the worst case. 

By means of the geometric transform called in- 
version, the planar diagram is embedded in three 
dimensions. The resulting cell complex turns out to be 
easier constructed than the original structure. In- 
crementally inserting the weighted points yields total 
space and time requirements in O(n2), which is optimal 
within a constant factor. From the cell complex, the 
weighted Voronoi diagram can be derived in time 
proportional to its size. 

Acknowledgements--The second author gratefully acknow- 
ledges discussions on the presented topic with David Kirk- 
patrick and Raimund Seidel. 
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