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Abstract
A popular learning method for solving classification problems is AdaBoost, which
combines an ensemble of weak classifiers into a strong classifier. In this report
the real version of AdaBoost is used on the face detection problem and the weak
classifiers are modeled by simple histograms.

A face detector of the Viola-Jones type is built to detect frontal faces in un-
constrained images. The real-time performance of the system is attributed to how
AdaBoost selects a small number of critical visual features and how more and more
complex classifiers are combined in a cascade.

Results are demonstrated on a real-world test set and show that similar detection
rates can be achieved with less than half the number of weak classifiers needed for
standard AdaBoost.

Snabb detektion av ansikten med
AdaBoost och histogram

Sammanfattning
En populär inlärningsmetod för klassificeringsproblem är AdaBoost, som kombinerar
en grupp av svaga klassificerare till en robust klassificerare. I denna rapport tillämpas
den reella versionen av AdaBoost på problemet att detektera ansikten, där de svaga
klassificerarna representeras av histogram.

En ansiktsdetektor av Viola-Jones-typ har skapats för att detektera bilder av
ansikten tagna framifrån. Systemets snabba beteende beror på metoden AdaBoost
väljer ut ett fåtal utslagsgivande visuella kännetecken, samt hur allt mer komplexa
klassificerare är ordnade i en serie.

Resultaten demonstreras genom en mängd autentiska bilder och visar att lik-
värdiga detektionsförhållanden kan uppnås med färre än hälften av antalet svaga
klassificerare som behövs för standardversionen av AdaBoost.



Contents

1 Introduction 1
1.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 AdaBoost 3
2.1 The Boosting Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Training Error . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Choosing Parameters for Discrete AdaBoost . . . . . . . . . . 6
2.2.3 Domain-partitioning Weak Classifiers . . . . . . . . . . . . . 7
2.2.4 Boosting and Logistic Regression . . . . . . . . . . . . . . . . 11
2.2.5 Generalisation Error . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Face Detection 19
3.1 Previous research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 The Adopted Face Detection Approach . . . . . . . . . . . . . . . . . 21

3.2.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Learning the Classifier Function . . . . . . . . . . . . . . . . 22
3.2.3 Cascade Building . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.4 Summary of the System . . . . . . . . . . . . . . . . . . . . . 26

4 Experiments 27
4.1 Training Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 The Training Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Scanning the Final Detector . . . . . . . . . . . . . . . . . . . . . . . 28

5 Results 30
5.1 Test Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 A Single Strong Classifier . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 A Cascade of Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . 31



6 Discussion 36
6.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 36
6.2 Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Bibliography 38

A Examples of Detected Faces 40



Chapter 1

Introduction

Face detection systems identify faces in images and video sequences using comput-
ers. An ideal face detection system should be able to identify and locate all faces
regardless of their positions, scale, orientation, lightning conditions, expressions and
so on. Due to the large intra-class variations in facial appearances, face detection
has been a challenging problem in the field of computer vision.

There are many closely related problems with numerous applications of face de-
tection:

• Face localisation aims to determine image position of a single face; a simplified
detection problem with the assumption that an input image contains only one
face.

• Facial feature detection is to detect the presence and location of features, such
as eyes, nose, nostrils, eyebrows, mouth, lips, ears, etc., with the assumption
that there is only one face in an image.

• Face recognition or face identification compares an input image against a
database and reports a match, if any.

• Face authentication verifies the claim of the identity of an individual in an
input image.

• Face tracking methods continuously estimate the location and possibly the
orientation of a face in an image sequence in real time.

• Facial expression recognition concerns identifying the affective states (happy,
sad, disgusted, etc.) of humans.

Evidently, face detection is the first step in any automated system which solves the
above problems and a robust and effective face detector system is essential.

Face detection can be performed based on several different cues: skin colour (for
faces in color images), motion (for faces in videos), facial/head shape and facial ap-
pearances, or a combination of them. However, detecting faces in black and white,
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CHAPTER 1. INTRODUCTION

still images with unconstrained, complex backgrounds is a complicated task. So
far learning-based approaches have been most effective and have therefore attracted
much attention the last years. Recently, Viola and Jones [18] introduced an impres-
sive face detection system capable of detecting frontal-view faces in real time. The
desirable properties are partly attributed to the used AdaBoost learning algorithm.

AdaBoost, from adaptive boosting, was rapidly made popular in the machine
learning community when it was presented by Freund and Schapire [2] about 10
years ago. The AdaBoost algorithm sequentially constructs a classifier as a linear
combination of “weak” classifiers. More recently attention has shifted to a refinement
of the original Discrete AdaBoost. One such example is the Real AdaBoost algorithm,
by Schapire and Singer [13], which incorporates a measure of confidences to the
predictions of each weak classifier.

1.1 Problem Description

This Master’s project was performed at the Center for Machine Perception (CMP)
at the Czech Technical University in Prague. At CMP, face detection is one of the
main topics of the on-going research. Based mainly on the work of Viola and Jones
a face detector program using Discrete AdaBoost has been developed and some
improvements have been suggested, e.g. [15, 16].

Based on the results by Schapire and Singer [13] the task of this Master’s project
is to implement and evaluate the Real AdaBoost algorithm on the face detection
problem using histograms to model the weak classifiers. Special attention has been
payed to how this affects the complexity of the classifiers and the effectiveness of
the system.

1.2 Overview

The ensuing chapters of this report are organised as follows: Chapter 2 explains the
AdaBoost algorithm and how its discrete and real versions are derived by minimising
the training error. Chapter 3 introduces the face detection problem and describes
the adopted face detector system used. Chapter 4 describes the setup of the exper-
iments carried out and the results are presented in Chapter 5. Finally, Chapter 6
summarises the results and the conclusions of the report.

1.3 Acknowledgement

This project was carried out on a scholarship from the research exchange program be-
tween CVAP, KTH and CMP, CTU founded by an institutional grant from STINT,
The Swedish Foundation for International Cooperation in Research and Education.
This support is gratefully acknowledged.
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Chapter 2

AdaBoost

In many problem domains, combining the predictions of several models often results
in a model with improved performance. Boosting is one such method that has shown
great promise.

The AdaBoost algorithm is a relatively new algorithm proposed by Freund and
Schapire [2]. It is a descendant of the weighted majority algorithm by Littlestone
and Warmuth [8] and the boost-by-majority algorithm by Freund [1]. All three
algorithms construct an ensemble of classifiers and use a voting mechanism for the
classification. In a wide variety of classification problems, their weighting scheme
and final classifier merge have proven to be an efficient method for reducing bias
and variance, and improving misclassification rates.

2.1 The Boosting Algorithm

AdaBoost takes as input a training set S = 〈(x1, y1), . . . , (xm, ym)〉 where each
instance, xi, belongs to a domain or instance space X , and each label yi belongs to a
finite label space Y. Here we will only focus on the binary case when Y = {−1, +1}.

Each round, t = 1, . . . , T , AdaBoost calls a given weak or base learning algorithm
which accepts as an input a sequence of training examples S along with a distribution
or set of weights over the training example, Dt(i). Given such an input the weak
learner computes a weak classifier, ht. In general, ht has the form ht : X → R. We
interpret the sign of ht(x) as the predicted label to be assigned to instance x. Once
the weak classifier has been received, AdaBoost chooses a parameter αt ∈ R that
intuitively measures the importance that it assigns to ht.

The idea of boosting is to use the weak learner to form a highly accurate predic-
tion rule by calling the weak learner repeatedly on different distributions over the
training examples. Initially, all weights are set equally, but each round the weights
of incorrectly classified examples are increased so that those observations that the
previously classifier poorly predicts receive greater weight on the next iteration.

A generalised version of Freund and Schapire’s AdaBoost algorithm is shown in
Algorithm 1.

3



CHAPTER 2. ADABOOST

Algorithm 1 A generalised version of AdaBoost
Given (x1, y1), . . . , (xm, ym) where xi ∈ X , yi ∈ {−1, +1}
Initialise weights D1(i) = 1/m

Iterate t = 1, . . . , T :

1. Train weak learner using distribution Dt

2. Get weak classifier ht : X → R
3. Choose αt ∈ R
4. Update:

Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt

where Zt is a normalisation factor (chosen so that Dt+1 will be a distri-
bution).

Output the final classifier:

H(x) = sign

(
T∑

t=1

αtht(x)

)

2.2 Analysis

As Algorithm 1 shows, the weights Dt(i) are updated and normalised on each round.
The normalisation factor takes the form

Zt =
m∑

i=1

Dt(i)e−αtyiht(xi)

and it can be verified that Zt measures exactly the ratio of the new to the old value
of the exponential sum

m∑

i=1

exp
(
− yi

t∑

j=1

αjhj(xi)
)

on each round, so that
∏

t Zt is the final value of this sum. We will see below that
this product plays a fundamental role in the analysis of AdaBoost.

4



CHAPTER 2. ADABOOST

2.2.1 Training Error

The most basic theoretical property of AdaBoost concerns its ability to reduce the
training error, i.e. the fraction of mistakes on the training set. If we let

f(x) =
T∑

t=1

αtht(x)

so that H(x) = sign(f(x)). Also, for any predicate π, let [[π]] be 1 if π holds and 0
otherwise. Then the following bound on the training error of H holds [13]:

Theorem 2.1. Assuming the notation in Algorithm 1, the following bounds holds
on the training error of H:

1
m

m∑

i=1

[[H(xi) 6= yi]] ≤
T∏

t=1

Zt.

Proof. By unraveling the update rule, we have that

DT+1(i) =
exp (−∑

t αtyiht(xi))
m

∏
t

Zt

=
exp (−yif(xi))

m
∏
t

Zt
. (2.1)

Moreover, if H(xi) 6= yi then yif(xi) ≤ 0 implying that exp(−yif(xi)) ≥ 1. Thus,

[[H(xi) 6= yi]] ≤ exp(−yif(xi)). (2.2)

Combining Eqs. (2.1) and (2.2) gives the stated bound on training error, since
1
m

∑

i

[[H(xi) 6= yi]] ≤ 1
m

∑

i

exp(−yif(xi))

=
∑

i

(∏
t

Zt

)
DT+1(i)

=
∏

t

Zt.

The important consequence of Theorem 2.1 is that, in order to minimise the
training error, a reasonable approach might be to greedily minimise the bound given
in the theorem by minimising Zt on each round of boosting. Following the idea by
Schapire and Singer [13] we will see two different ways of choosing the weights αt

and the weak classifier, ht.
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CHAPTER 2. ADABOOST

2.2.2 Choosing Parameters for Discrete AdaBoost

In Freund and Schapire’s [2] original Discrete AdaBoost the algorithm each round
selects the weak classifier, ht, that minimises the weighted error

εt =
∑

i

Dt(i)[[ht(xi) 6= yi]] =
∑

i

Dt(i)
(

1− yiht(xi)
2

)
(2.3)

on the training set.
We will here show how to choose the coefficients, αt, when the weak classifiers

are restricted to the discrete values {−1, +1}. Recall that we want to minimise Zt,
which we can rewrite as:

Zt =
∑

i

Dt(i)e−αtyiht(xi)

=
∑

i

Dt(i)
(

1 + yiht(xi)
2

e−αt +
1− yiht(xi)

2
eαt

)
. (2.4)

Using Eq. (2.3) we can analytically choose αt by minimising this expression, which
yields:

αt =
1
2

ln
(

1− εt

εt

)
. (2.5)

Plugging into Eq. (2.4) this choice gives

Zt = 2
√

εt(1− εt).

We have thus proved the following corollary of Theorem 2.1:

Corollary 2.1 (Freund & Schapire). Assume each ht ∈ {−1, +1} and that we
choose

αt =
1
2

ln
(

1− εt

εt

)

where

εt = Pr i∼Dt [hf (xi) 6= yi] =
∑

i

Dt(i)[[ht(xi) 6= yi]].

Then the training error of the final classifier, H, is as most

2T
T∏

t=1

√
εt(1− εt).
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Algorithm 2 Discrete AdaBoost
Given (x1, y1), . . . , (xm, ym) where xi ∈ X , yi ∈ {−1, +1}
Initialise weights D1(i) = 1/m

Iterate t = 1, . . . , T :

1. Find ht = arg min
hj

εj where εj =
m∑

i=1
Dt(i)[[ht(xi) 6= yi]]

2. Set αt =
1
2

ln
(

1− εt

εt

)

3. Update Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt

Output final classifier:

H(x) = sign

(
T∑

t=1

αtht(x)

)

The bound on the error given in Corollary 2.1 can also be written in the form

εtrain ≤ 2T
T∏

t=1

√
εt(1− εt) ≤ exp

(
−2

T∑

t=1

γ2
t

)

where we define γt = 1/2 − εt. Thus if each base classifier is slightly better than
random so that γt ≥ γ for some γ > 0, then the training error drops exponentially
fast in T . This bound, combined with the bounds on generalisation error given
below, proves that AdaBoost is indeed a boosting algorithm in the sense that it can
efficiently convert a weak learning algorithm into a strong learning algorithm, which
can generate a hypothesis with an arbitrary low error rate, given sufficient data.

We summarise the results from this section in Algorithm 2.

2.2.3 Domain-partitioning Weak Classifiers

As we have seen, the early studies of AdaBoost focused on finding a weak classifier
with a small number of errors with respect to the given distribution over the training
samples. Theorem 2.1 suggests, however, that a different criterion can be used.
Following Schapire and Singer [13], we can instead attempt to greedily minimise the
upper bound on the training error by minimising Zt on each round. Thus, the weak
learner should attempt to find a weak classifier, ht, which minimises

Zt =
∑

i

Dt(i) exp(−αtyiht(xi)).

7
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This expression can be simplified by folding αt into ht. In other words, by assuming,
without loss of generality, that the weak learner can freely scale any weak classifier,
ht, by any constant factor αt ∈ R. Then the weak learner’s goal now is to minimise

Zt =
∑

i

Dt(i) exp(−yiht(xi)). (2.6)

Different algorithms, i.e. gradient-based algorithms, can be modified to minimise
this loss function directly. We will here show how histograms can be used based on
the criterion for finding good weak classifiers which make their predictions based on
a partitioning of the domain X . To be more specific, each such classifier is associated
with a partition of X into disjoint blocks X1, . . . , XN which cover all of X and for
which h(x) = h(x′) for all x, x′ ∈ Xj , where we from now on omit the subscript
t when clear from context. In other words, h’s prediction depends only on which
block Xj a given instance falls into.

Suppose that we have a partition X1, . . . , XN of the space. The question is what
prediction should be made for each block of the partition. That is, how to find a
function h : X → R, which respects the given partition and minimises Eq. (2.6).

Let cj = h(x) for x ∈ Xj . The goal is to find appropriate choices for cj . For each
j and for b ∈ {−1, +1}, let

W j
b = Pr i∼D[xi ∈ Xj ∧ yi = b] =

m∑

i=1

D(i)[[xi ∈ Xj ∧ yi = b]]

be the weighted fraction of examples which fall in block j with label b. Then Eq. (2.6)
can be rewritten

Z =
∑

j

∑

i:xi∈Xj

D(i) exp(−yicj)

=
∑

j

(
W j

+1e
−cj + W j

−1e
cj

)
, (2.7)

which is minimised when

cj =
1
2

ln

(
W j

+1

W j
−1

)
. (2.8)

Plugging into (2.7) gives

Z = 2
∑

j

√
W j

+1W
j
−1. (2.9)

Note that the sign of cj is equal to the majority class within block j and cj will
be close to zero if there is a roughly equal split of positive and negative examples in
block j. Likewise, cj will be far from zero if one label strongly predominates.

8



CHAPTER 2. ADABOOST

Figure 2.1: Example of the distribution of two general classes. The
prediction of the weak classifier for each block is based on the ratio the
two bins within that block. Instances outside the interval of focus are
predicted as in the closest block.

In many real world situations, instances of one class often strongly dominates at
the end of the domain. Therefore, it is often better to focus on the subspace where
the data is distributed more evenly. In the experiments presented later 5% of the
data at each end of the domain has been rejected and histograms generated on the
rest of the data. This is depicted in Figure 2.1 and the Real AdaBoost algorithm is
summarised in Algorithm 3.

Smoothing the predictions The scheme presented above requires that we predict
as in Eq. (2.8) on block j. It may well happen that W j

+1 or W j
−1 is very small or

even zero, in which case cj will be very large or infinite in magnitude. In practise,
such large predictions may cause numerical problems. In addition, there may be
theoretical reasons to suspect that large, overly confident predictions will increase
the tendency to over-fit.

To limit the magnitudes of the predictions we used the smoothed values

cj =
1
2

ln

(
W j

+1 + ε

W j
−1 + ε

)
(2.10)

for some appropriately small positive value of ε. Because W j
+1 and W j

−1 are both

9
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Algorithm 3 Domain-partitioned Real AdaBoost
Given (x1, y1), . . . , (xm, ym) where xi ∈ X , yi ∈ {−1, +1}
Initialise weights D1(i) = 1/m

Iterate t = 1, . . . , T :

1. Find a partition, X1, . . . , XN , of the domain X
2. Choose ht(x) =

1
2

ln
P (y = +1|x, Dt)
P (y = −1|x, Dt)

according to Eq. (2.8)
3. Update Dt+1(i) = Dt(i) exp (−yiht(xi))

and normalise so that
m∑

i=1
Dt+1(i) = 1

Output final classifier:

H(x) = sign

(
T∑

t=1

ht(x)

)

bounded between 0 and 1, this has the effect of bounding |cj | by
1
2

ln
(

1 + ε

ε

)
≈ 1

2
ln(1/ε).

Moreover, this smoothing only slightly weakens the value of Z since, plugging
Eq. (2.10) into Eq. (2.7) gives

Z =
∑

j


W j

+1

√√√√W j
−1 + ε

W j
+1 + ε

+ W j
−1

√√√√W j
+1 + ε

W j
−1 + ε




≤
∑

j

(√
W j

+1(W
j
−1 + ε) +

√
W j
−1(W

j
+1 + ε)

)

≤
∑

j

(
2
√

W j
+1W

j
−1 +

√
εW j

+1 +
√

εW j
−1

)

≤ 2
∑

j

√
W j

+1W
j
−1 +

√
2Nε. (2.11)

In the second inequality, √x + y ≤ √
x +

√
y for x, y ≥ 0 is used and in the last

inequality we used the fact that
∑

j

(W j
+1 + W j

−1) = 1 ⇒
∑

j

(√
W j

+1 +
√

W j
−1

)
≤
√

2N,

10
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where N is the number of blocks in the partition.
Thus comparing Eqs. (2.9) and (2.11) we see that Z will not be greatly degraded

by smoothing if we choose ε ¿ 1/(2N). In the experiments presented later ε of the
order of 1/(2mN), where m is the number of training examples, is used.

2.2.4 Boosting and Logistic Regression

Classification generally is the problem of predicting the label y of an instance x with
the intention of minimising the probability of an incorrect prediction. However, it
is often useful to estimate the probability of a particular label. In statistics this
problem has been extensively studied and logistic regression models are often used.

A recent paper of Friedman et al. [3] presents a statistical interpretation of the
AdaBoost algorithm. In particular, they show how boosting algorithms result from
building additive models using Newton updates of the exponential loss function,
making a comparison between boosting and stepwise logistic regression methods.
Their ideas were formalised in the LogitBoost algorithm.

We will in this section see, following the work from Friedman et al. [3], how the
discrete and real versions of AdaBoost are related to logistic regression. We begin
with a review of the logistic regression model.

The Logistic Regression Model As before, let X and Y be spaces of instances
and labels, respectively. Although the overall goal still is classification, we focus on
estimating probabilities which can be converted into classifications in the obvious
way by thresholding. That is, given training data, we wish to build a rule that
estimates the conditional probability that y = +1 given x when test example (x, y)
is chosen according to some distribution D. In logistic regression this is done by
building a real-valued function F : X → R and estimate P (y = +1|x) by σ(F (x)).
Friedman et al. suggest using the symmetric logistic function

σ(z) =
ez

ez + e−z
.

In the sense of additive regression models F (x) is a linear combination of base
functions

F (x) =
M∑

j=1

fj(x).

With such a model we attempt to find F (x) by maximising the conditional likelihood
of the data, or equivalently, minimising the negative log conditional likelihood

∑

i

ln
(
1 + e−2yiF (xi)

)
. (2.12)

As we have seen in earlier section AdaBoost attempts to minimise another loss
function, namely:

∑

i

e−yiF (xi). (2.13)

11
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It can be verified that Eq. (2.12) is upper bounded by Eq. (2.13). In addition, if
we add the constant 1 − ln 2 to Eq. (2.12), which does not affect its minimisation,
the resulting function and Eq. (2.13) have identical Taylor expansions around zero
up to second order; thus, their behavior near zero is very similar. Finally, it can be
shown that, for any distributions over pairs (x, y), the expectations

E
[
ln

(
1 + e−2yF (x)

)]

and

E
[
e−yF (x)

]

are minimised by a the same function F (x). Lemma 2.1 shows that this function
F (x) is the symmetric logistic transform of P (y = 1|x).

Lemma 2.1. σ(F (x)) = E[e−yF (x)] is minimised at

F (x) =
1
2

ln
P (y = 1|x)

P (y = −1|x)

Hence

P (y = 1|x) =
eF (x)

e−F (x) + eF (x)

P (y = −1|x) =
e−F (x)

e−F (x) + eF (x)

Proof. While E entails expectations over the joint distributions of y and x, it is
sufficient to minimise the criterion conditional on x.

E[e−yF (x)|x] = P (y = 1|x)e−F (x) + P (y = −1|x)eF (x)

∂E[e−yF (x)|x]
∂F (x)

= −P (y = 1|x)e−F (x) + P (y = −1|x)eF (x)

Setting the derivative to zero the expression for F (x) follows.
The conditional probabilities follows by some manipulation of the expression for

F (x) and the fact that P (y = 1|x) + P (y = −1|x) = 1.

We will now state and prove two theorems from Friedman et al. [3] which shows
that Discrete and Real AdaBoost are stage-wise estimation procedures for fitting an
additive logistic regression model.

Theorem 2.2. The Discrete AdaBoost in Algorithm 2 fits an additive logistic re-
gression model by using adaptive Newton updates for minimising E[e−yF (x)].

12
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Proof. Let σ(F (x)) = E[e−yF (x)]. Suppose we have a current estimate F (x) and
seek an improved estimate F (x)+ cf(x). For fixed c and x, expand σ(F (x)+ cf(x))
to second order about f(x) = 0:

σ(F + cf) = E[e−y(F (x)+cf(x))]

≈ E[e−yF (x)(1− ycf(x) + c2f(x)2/2)]

Minimising point-wise with respect to f(x) ∈ {−1, +1}, we find

f̂(x) = arg min
f

Ew[1− ycf(x) + c2f(x)2/2|x]

= arg min
f

Ew[(y − cf(x))2|x)]

= arg min
f

Ew[(y − f(x))2|x]

where w(y|x) = exp(−yF (x)/E[exp(−yF (x)]) and the last equality follows by con-
sidering the two possible choices for f(x). Thus, minimising a quadratic approxi-
mation to the criterion leads to a weighted least-squares choice of f(x) ∈ {−1, +1}
and this constitutes the Newton step.

Given f̂(x) ∈ {−1, +1}, we can directly minimise σ(F + cf̂) to determine c:

ĉ = arg min
c

Ew[e−cyf̂(x)]

=
1
2

ln
(

1− ε

ε

)

where ε = Ew

[
[[y 6= f̂(x)]]

]
.

Combining these steps we get the update for F (x)

F (x) ← F (x) +
1
2

ln
(

1− ε

ε

)
f̂(x)

In the next iteration the new contribution ĉf̂(x) to F (x) augments the weights:

w(y|x) ← w(y|x)e−ĉf̂(x)y,

followed by a normalisation. Since yf̂(x) = 2 × [[y 6= f̂(x)]] − 1, we see that the
update is equivalent to

w(y|x) ← w(y|x) exp
(

ln
(

1− ε

ε

)
[[y 6= f̂(x)]]

)

Thus the function and weight updates are identical to those used in Discrete Ada-
Boost.

Theorem 2.3. The Real AdaBoost algorithm fits an additive logistic regression
model by stage-wise optimisation of σ(F (x)) = E[e−yF (x)].

13
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Proof. Suppose we have a current estimate F (x) and seek an improved estimate
F (x) + f(x) by minimising σ(F (x) + f(x)):

∂σ(F (x) + f(x))
∂f(x)

= −E
[
e−yF (x)ye−yf(x)|x

]

= −E
[
e−yF (x)[[y = 1]]e−f(x)|x

]
+ E

[
e−yF (x)[[y = −1]]ef(x)|x

]

Dividing through by Ee−yF (x) and setting the derivative to zero yields

f̂(x) =
1
2

ln
Ew([[y = 1]]|x)

Ew([[y = −1]]|x)

=
1
2

ln
Pw(y = 1|x)

Pw(y = −1|x)

where w(y|x) = exp(−yF (x))/E[exp(−yF (x))|x].

2.2.5 Generalisation Error

In learning problems like pattern classification and regression, we are of course inter-
ested in performance on examples not seen during training, i.e. in the generalisation
error. A considerable amount of effort has been spent on obtaining good error
bounds. Typically, such bounds take the form of a sum of two terms: some sample-
based estimate of performance and a penalty term that is large for more complex
models.

A classic theory for error bounds of binary classification methods was developed
by Vapnik and Chervonenkis [17]. Their results relates the empirical classification
error of a binary classifier, H, to the probability of the error Pr[y 6= H(x)], where
Pr[·] denotes the empirical probability on the training sample.

For AdaBoost, two methods of analysing the generalisation error have been pro-
posed in the literature. In the track of Vapnik and Chervonenkis’s theory, Freund
and Schapire [2] showed how to bound the generalisation error of the final classifier
in terms of its training error, the size m of the sample, the VC-dimension1 d of
the base classifier space and the number of rounds T of boosting. Specifically, the
generalisation error, with high probability, is at most

Pr[H(x) 6= y] +O
(√

Td

m

)
.

This bound suggests that boosting will over-fit if run for too many rounds, i.e. as T
becomes too large. However, initial experiments observed indicate that AdaBoost

1The Vapnik-Chervonenkis (VC) dimension is a standard measure of the “complexity” of a space
of binary functions.
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tends not to over-fit, even when run for hundreds of rounds of boosting, the general-
isation error continues to drop, or at least not increase, long after the training error
had reached zero, clearly contradicting the spirit of the bound above.

In response to these empirical findings, Schapire et al. [12], gave an alternative
analysis in terms of the margins achieved by the final classifier on the training exam-
ples. The margin of a labeled example (x, y) is defined to be yf(x) and is positive
if and only if H makes a correct prediction on the example. We further regard
the magnitude of the margin as a measure of the “confidence” of H’s prediction.
Schapire et al. show that larger margins imply lower generalisation error, regardless
of the number of rounds. Moreover, they show that AdaBoost tends to increase the
margins of the training examples.

In a first step to outline their work, we assume that each weak classifier ht has
bounded range. Recall that the final classifier has the form

H(x) = sign(f(x)) where f(x) =
∑

t

αtht(x).

Since the ht’s are bounded and since we only care about the sign of f , we can re-scale
the ht’s and normalise the αt’s allowing us to assume without loss of generality that
each ht : X → [−1, +1], each αt ∈ [0, 1] and

∑
t αt = 1. Let us also assume that

each ht belongs to a classifier space H.
Schapire et al.’s result can be applied only in the special case that each h ∈ H

has range {−1, +1}. However, Schapire and Singer [13] extends the theory to allow
the weak classifier to be real-valued, which is of our interest.

Let us define d to be the pseudo-dimension of H and use PrD[·] to denote the
probability of an event when the example (x, y) is chosen according to the distri-
bution D over X × {−1, +1}, and Pr S [·] to denote the probability with respect to
choosing an example uniformly at random from the training set. It can then be
proofed that, with high probability, the generalisation error satisfies the following
bound for all θ > 0:

PrD[yf(x) ≤ 0] ≤ Pr S [yf(x) ≤ θ] +O
(√

d

mθ2

)

See for example Schapire and Singer [13] for a comprehensive proof. Note that this
bound is entirely independent of T , the number of rounds of boosting. In addition,
Schapire et al. proved that boosting is particularly aggressive at reducing the margin
since it concentrates on the examples with the smallest margins, whether positive
or negative.

Experiments have shown that as the margin increases, the generalisation perfor-
mance becomes better on data sets with almost no noise. However, this performance
has not been confirmed for noisy data, which has at least one of the following prop-
erties: 1) overlapping class probability distributions, 2) outliers, or 3) mislabeled
patterns. All these types of noise appear very often in data analysis and implies
that AdaBoost exhibits suboptimal generalisation ability and over-fitting behavior
for such data.
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2.3 Simulation Studies

In this section the performance of Real AdaBoost with different complexities of the
histograms are compared on an artificially constructed problem.

The synthetic data used for the experiments consists of two randomly generated
classes, where each instance, xi, belongs to the domain X ⊆ R2. The data set
for the first class was generated from a N(0, I) distribution, while each instance
x = (r cos θ, r sin θ) from the second class was generated using r ∈ N(4, 1) and
θ ∈ U(0, 2π).

The domain is partitioned in 13 different ways; horizontally, vertically, diagonally
and 9 radial partitions with different centre points. At each round of AdaBoost,
histograms with N bins are generated for every partition and the predictions within
each block is computed according to Eq. (2.10). The partition which minimises Z as
in Eq. (2.11) is then chosen as weak classifier for that round. An example illustrating
the data sets and the partitioned domain is shown in Figure 2.2, where a decision
function is built up by Real AdaBoost to classify two sets of 100 data points.

Figure 2.3 compares the training and test error rates for Real AdaBoost with 4,
8 and 16 bins in the histogram, respectively. 1000 data points for the two classes
were generated and AdaBoost was run 20 times and the results were averaged.

From Figure 2.3 it seems that using more complex histograms yields a better
reduction of the training error. However, this fine partition of the space leads to
overtraining of the system, something that is not experienced for the coarser parti-
tions.
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Figure 2.2: Example of binary classification using Real AdaBoost with
T = 1, 2, 3, 4, 5 and 25 rounds of boosting. The weak classifiers consist
of 13 partitions of the domain, each partitioned into 8 blocks. The dashed
lines mark a change of sign of each weak classifier. Misclassified data
are highlighted.
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Figure 2.3: Training error (top) and test error (bottom) on a toy prob-
lem using Real AdaBoost and histograms with 4, 8 and 16 bins, respec-
tively. The results are averaged over 20 rounds.
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Face Detection

Images containing faces are essential to intelligent vision-based human computer in-
teraction and research efforts in face processing include face recognition, face track-
ing, pose estimation and expression recognition. However many reported methods
assume that the faces in an image have been identified and localised. To build fully
automated systems that analyse the information contained in face images, robust
and efficient face detection algorithms are required.

Given a single image the goal of face detection is to identify all image regions
which contain a face regardless of its position, orientation and the lightning condi-
tion. Such a problem is challenging because faces are nonrigid and have a high degree
of variability in scale, location, orientation (up-right, rotated) and pose (frontal, pro-
file). Facial expression, occlusion and lightning conditions also change the overall
appearances of faces.

Two important characteristics for a trained face detector are its detection and
error rates. The detection rate is defined as the ratio between the number of faces
correctly detected and the number of faces determined by a human. In general, two
types of errors can occur:

False negatives in which faces are missed, resulting in low detection rate.

False positives in which an image region is declared to be a face, but it is not.

The detection and false positive rates are normally related since one can often tune
the parameters of the detection system to increase the detection rates while also
increasing the number of false detections.

3.1 Previous research

The face detection problem is pretty old and many algorithms have been proposed.
Therefore, only some of the latest approaches often used for comparison will be
mentioned here. For a detailed survey of the older methods see e.g. Yang et. al [20].

Rowley et al. [11] built a neural network based face detector. A neural network
is trained to classify a 20 × 20 image. For detection of faces of different scales and
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at different positions the image is repetitively sub-sampled and scanned throughout
every location in every such image. Multiple responses of the detector are then
merged. For detection of rotated faces, Rowley proposed a two stage algorithm.
First, a neural network determines the rotation of the face (for non-face images,
arbitrary rotation is returned), the image is derotated and in the second stage a
frontal face detector is run. Similar approach was used for head pose, however better
results were obtained by dividing the task into several subproblems for different
poses. The Rowley’s detector is quite accurate but is very slow. However, the two
stage approach is an improvement over the previous approaches scanning the image
at every position, scale and rotation.

Schneiderman et al. [14] adopted a fully Bayesian approach. The final decision
rule is a simple likelihood ratio test. Both class conditional density functions are
modeled as a product of a big number of likelihoods of a single visual attribute where
the attributes are assumed independent. The likelihoods are modeled as histograms.
The visual attributes used are based on the quantised wavelet coefficients to allow
localisation of the attributes in space, scale and orientation. To collect a represen-
tative set of the visual attributes the AdaBoost algorithm is used. The detector is
able to detect either frontal faces or profiles but is again relatively slow.

Yang et al. [20] use the SNoW architecture to build a classifier. The SNoW
(Sparse Network of Winnows) architecture is similar to the perceptron but with
very high number of inputs (possibly infinite). Few of them are “active” and the rest
“inactive”. The inputs correspond to the features in the example images. Measured
values in an image determine which input features becomes active. Weights of
connections between active inputs and output are summed and thresholded. If a
prediction mistake is made the weights are increased or decreased, depending on the
type of mistake (missed detection or false alarm). The weighted sum is similar to
the AdaBoost algorithm, yet the feature set reduction is not so immense. The speed
of the evaluation is higher but still does not allow a real-time performance.

Another very simple and almost directly Bayesian approach to the frontal face
detection was proposed by Liu [9]. The face class is modeled as a multivariate
normal distribution. The same model is applied to the non-face class, however only
for the non-face samples close enough to the face class. Since the class conditional
probabilities are known after training, the Bayes’ decision rule is applied. For the
classification of the rest of the non-face samples a simple threshold on the distance
to the face class is used. The important property of the approach is the fast non-
face samples classification, however, the detection is rather slow. Nevertheless, the
reported results are very good.

The first really real-time face detector was proposed by Viola and Jones [19].
The Viola and Jones frontal face detector consists of several classifiers trained by
the AdaBoost algorithm that are organised into a decision cascade. Each cascade
stage classifier is set to reach a very high detection rate and an “acceptably” low
false positive rate. Since it is trained on the data classified as a face by the previous
stages, the final false positive rate is very low and the final detection rate remains
high. Besides similar detection rates as the previous approaches, the main advantage
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of Viola and Jones algorithm is the real-time detection.
Later, Viola and Jones extended their work also to multi-view face detection. The

used approach is similar to the work of Rowley et al.. A decision tree is trained to
find a head pose and when the pose is known a face detector corresponding to this
pose is evaluated. The paper demonstrates that the Viola and Jones approach can be
extended to the multi-view face detection without any substantial speed reduction.

The Viola and Jones algorithm was also extended to the multi-view face detection
by Li et al. [6]. Instead of using discrete AdaBoost, the real version was used and
the algorithm was modified to exclude some of the already found weak classifiers to
overcome non-monotonicity problem of the greedy selection method. To detect a
face independent of the head pose, a pyramid of coarse to fine detectors is trained.
The algorithm runs in real-time.

Only for the works of Viola and Jones, and Li et al. a real-time performance is
reported. All other approaches are often more accurate but with a large penalty in
speed. The main attribute contributing to the real-time performance of the methods
is the sequential classifier evaluation. Even Rowley et al. used a simple version of
sequential decision making in their two stage architecture and in the approach by
Liu the non-face samples are classified as soon as possible. Nevertheless, even in the
approaches performing in real-time, the lack of a deeper theory working properly
with the time parameter is evident.

3.2 The Adopted Face Detection Approach

Viola and Jones [19] introduced an impressive face detection system capable of de-
tecting faces in real-time with both high detection rate (about 90%) and very low
false positive rates. The desirable properties are attributed especially to the effi-
ciently computable features used, the AdaBoost learning algorithm and the cascade
technique adopted for decision making.

3.2.1 Features

The detection procedure classifies images based on the value of simple scalar features.
There are many motivations for using features rather than the pixels directly. The
most common reason is that features can act to encode ad hoc domain knowledge
that is difficult to learn using a finite quantity of training data, another reason is
that the feature-based system operate much faster than a pixel-based system.

The features are similar to Haar basis functions. They operate on the grey level
images and decision depends on the value of difference of sums computed over rect-
angular regions. Viola and Jones use three kinds of features depicted in Figure 3.1.
The value of a two-rectangular feature is the difference between the sums of the
pixels within two rectangular regions. The regions have the same size and shape
and are horizontally or vertically adjacent. A three-rectangular feature computes
the sum within two outside rectangles subtracted from the sum in center rectangle.
Finally a four-rectangular feature computes the difference between diagonal pairs of
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Figure 3.1: Examples of the Viola and Jones features. The squares
represents a face frame. The value of the filter based on a given feature
is computed as the sum over filled rectangle(s) minus the sum over empty
rectangle(s).

rectangles. Two other types of features can easily be generated by rotating the first
two types by 90◦.

Rectangle features can be computed very efficiently by means of an auxiliary
image, also referred to as an integral image. The integral image, I, at location
(x, y) is defined as the sum of the pixels of the rectangle ranging from the top left
corner at (0, 0) to the bottom right corner at (x, y):

I(x, y) =
∑

x′≤x, y′≤y

i(x′, y′),

where i is the input image in question. The integral image can be computed in one
pass over the original image by using the following recurrence relation:

I(x, y) = I(x, y − 1) + I(x− 1, y) + i(x, y)− I(x− 1, y − 1)

with I(−1, y) = I(x, −1) = I(−1, −1) = 0.
Using the integral image any rectangular sum can be computed in four array

references, as depicted in Figure 3.2. Since the two-rectangular features defined
above involve adjacent rectangular sums they can be computed in only six references,
eight in the case of three-rectangle features and nine for four-rectangle features.

As we have seen the scalar feature is a transformation from the n-dimensional
image space to the real line. Given that the base resolution of the face detector is
24 × 24 pixels the image space is 576-dimensional. For each such detector window
there are tens of thousands of different features ranging over all scales and positions
within the window. Thus, the set of rectangular features is an over-complete set
for the intrinsically low-dimensional image pattern x. However, as we will see in
the next section only a very small number of these features are needed to form an
effective classifier.

3.2.2 Learning the Classifier Function

Given a feature set and a training set of positive and negative images, different
machine learning approaches could be used to learn a classification function. The
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Figure 3.2: Using the integral image representation of an image the
sum of the pixels within rectangle D can be computed with only four
array references. For example, the value of the integral image at location
4 is the sum of the pixels within the rectangles A + B + C + D. Thus, the
sum within rectangle D can be computed as 4 + 1− (2 + 3).

system of Viola and Jones makes a successful application of the discrete version of
AdaBoost to learn the classification function. Specifically, AdaBoost is adapted to
solve the following three fundamental problems in one boosting procedure:

Learning effective features from a large feature set. The conventional AdaBoost
procedure can be easily interpreted as a greedy feature selection process. Con-
sider the general problem of boosting, in which a large set of classification
functions are combined using a weighted majority vote. The challenge is to
associate a large weight with each good classification function and a smaller
with poor functions. Drawing an analogy between weak classifiers and fea-
tures, AdaBoost is an effective procedure for searching out a small number of
good features.

Constructing weak classifiers each of which is based on one of the selected fea-
tures. One practical method for completing this analogy is to restrict the weak
learner to the set of classification functions each of which depend on a single
feature. In support of this goal, the weak learning algorithm is designed to se-
lect the single rectangle feature which best separates the positive and negative
examples. From the theory in sections 2.2.2 and 2.2.3 this implies choosing
the feature which minimise the error εt or Zt, for the discrete or real version
of AdaBoost, respectively.

Boosting the weak classifiers into a stronger classifier. AdaBoost combines the
selected features as a linear combination and provides a strong theoretical
backbone for the bound of the training error.
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The way Real AdaBoost is adopted to solve these problems is described in Algo-
rithm 4.

3.2.3 Cascade Building

In order to detect a face in an image we need to examine all possible sub-windows and
determine whether they contain a face or not. This is done for all possible positions
and for different scales. In a regular image of 320×240 pixels there are over 500 000
sub-windows. In order to reduce the total running time of the system we need to
radically bound the average time that the system spends on each sub-window. For
this purpose, Viola and Jones [19] suggested using a cascade of classifiers. The idea
of the cascade is based on the observation that we need very few features to create
a classifier that accepts almost 100% of the positive examples while rejecting many
(20-50%) of the false examples. Linking many such classifiers one after another
will create a cascade of classifiers that separates true from false examples almost
perfectly, see Figure 3.3.

1 2 K...

Rejected Sub-windows

All Sub-windows

1-f 1-f 1-f

d d dd
Classified Faces

Figure 3.3: Schematic depiction of a cascade of classifiers with K
stages. Each classifier is trained to achieve a detection rate d and a
false negative rate f . A sub-window is considered to be a face only if it
passes all the K classifiers.

The structure of the cascade reflects the fact that within any single image an
overwhelming majority of sub-windows are negative. As such, the cascade attempts
to reject as many negatives as possible at the earliest stage possible. While a posi-
tive instance will trigger the evaluation of every classifier in the cascade, this is an
exceedingly rare event.

The building process of the cascade is described in Algorithm 5. Inputs to the
algorithm are the desired false positive rate, f , the detection rate, d, of the cascade
stages and the final positive rate, ffinal, of the cascade. Each stage of the cascade
is trained by AdaBoost with the number of features used being increased until the
target detection and false positive rates can be met for this level. Because AdaBoost
attempts only to minimise errors and is not specifically designed to achieve high
detection rates at the expense of larger false positive rates, a threshold, θ, for the
strong classifier is introduced. That is, let the new strong classifier be

H(x)
≥ θ ⇒ x is a face
< θ ⇒ x is a non-face
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Algorithm 4 The AdaBoost Algorithm for Learning a Classifier Function
Given example images (x1, y1), . . . , (xm, ym) where yi = −1, +1 for negative and

positive examples, respectively.

Initialise weights D1(i) = 1/m.

Iterate t = 1, . . . , T :

1. Normalise the weights,

Dt(i) =
Dt(i)

m∑
i=1

Dt(i)

so that Dt is a probability distribution.
2. For each feature, k:

- Compute a histogram, with N bins, using the values of the feature
extracted from the training images.

- Train a classifier, hk, using the histogram and

cj =
1
2

ln




m∑
i=1

Dt(i)[[xi ∈ Bin(j) ∧ y = +1]] + ε

m∑
i=1

Dt(i)[[xi ∈ Bin(j) ∧ y = −1]] + ε




where cj = h(x) for x ∈ Bin(j) and ε is a small positive number.
- Compute

Zk =
N∑

j=1

∑

i:xi∈Bin(j)

D(i) exp(−yicj).

3. Choose the classifier, ht, with the smallest Zt.
4. Update the weights:

Dt+1(i) = Dt(i) exp (−yiht(xi))

Output the final classifier:

H(x) = sign

(
T∑

t=1

ht(x)

)
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Reducing the threshold yields a classifier with more false positives and a higher de-
tection rate. The rates are determined by testing the current detector on a validation
set.

Subsequent classifiers are trained using those examples which pass through all
the previous stages. As a result, the second classifier faces a more difficult task than
the first. The examples which make it through the first stage are “harder” than
typical examples.

Algorithm 5 Training algorithm for building a cascade detector
Input: Allowed false positive rates f , detection rate d and final false positive rate

ffinal.

Initialise: F0 = 1, D0 = 1

Do until Fi < ffinal

1. Train a classifier with AdaBoost until freached < f and dreached > d on the
validation set.

2. Fi+1 = Fi × freached

3. Di+1 = Di × dreached

4. Discard misclassified faces and generate new data from non-face images.

3.2.4 Summary of the System

To summarise this section, the construction of the detection system is done as fol-
lows:

1. Simple features are designed. There are a large number of candidate features.

2. A small subset of them are selected and the corresponding weak classifiers are
learned using AdaBoost as described in Algorithm 4.

3. The strong classifier is constructed as a linear combination of the weak ones
as the output of AdaBoost learning.

4. A detector is composed of one or a cascade of strong classifiers.
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Experiments

Two different face detectors have been constructed to compare the performance of
the real AdaBoost algorithm with the discrete version used by Viola and Jones. One
single strong classifier and one cascade of strong classifiers were trained and tested
on a real-world test set.

4.1 Training Data Set

Face images are taken from the MPEG7 face data set [4]. The data set contains face
images of variable quality, different facial expressions and taken under a wide range
of lightning conditions, with uniform or complex background. The pose of the heads
is generally frontal with slight rotation in all directions. The eyes and the nose tip
are aligned in all images. The data set contains 3 175 images.

Pose variability was added synthetically to the data. The images were randomly
rotated by up to 5◦, shifted up to one pixel and the bounding box was scaled by a
factor of 1± 0, 05. Two data sets, training and validation, of the same size as the
original data set were created by the perturbations.

Non-face images were collected from the web. Images of diverse scenes were
included. The data set contains images of animals, plants, countryside, man-made
objects, etc.. More than 3 000 images were collected and from them non-face sub-
windows were randomly generated.

Examples of faces and non-faces used for training are shown in Figure 4.1.

4.2 The Training Process

During the training process, the non-face part of the training and validation data
is updated for each stage. It consists of two sets of 5 000 regions from the non-face
images. For the first stage random regions are used, for the later stages, the non-
face images are scanned with the cascade built so far and misclassified regions are
chosen. The face set remains almost the same over the whole training, only the few
faces misclassified at some stage are removed.
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Figure 4.1: Examples of faces and non-faces used for training.

The process is driven by the stage false positive, detection and final false positive
rates. In the reported experiment the values for each stage were set to f = 0.4 for
the false positive rate and d = 0.999 detection rate, with an overall false positive rate
of ffinal = 0.0001 for the whole cascade detector. Because the overall false positive
rate are a product of the rates of the individual stages this means that the number
of stages, K, needed, is given by:

fK < ffinal.

With the values given above this means the the final cascade will need 11 stages
(0.411 = 4.2× 10−5 < 0.0001).

4.3 Scanning the Final Detector

Image Pre-processing To minimise the effect of different lightning conditions all
example sub-windows used for training were variance normalised. The variance of
an image can be computed quickly using a pair of integral images and the the fact
that:

σ2 = µ2 − 1
N

∑
x2,

where σ is the standard deviation, µ is the mean, and x is the pixel value within
the sub-window. The mean of a sub-window can be computed using the integral
image. The sum of squared pixels is computed using an integral image of the image
squared. During scanning the effect of image normalisation is achieved by scaling
the feature values rather than operating on the pixels.
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Scanning the Image The final detector, with a base resolution of 24 × 24 pixels,
is scanned across the image at multiple scales and locations. Because the features
can be evaluated at any scale with the same cost, scaling is achieved by scaling the
detector itself rather than scaling the image. In the results presented here a scale
factor of 1.25 is used. The detector is scanned across location by shifting the window
a number of pixels ∆. This shifting process is affected by the scale of the detector; if
the current scale is s the window is shifted by [s∆] pixels, where [·] is the rounding
operator.

The choice of ∆ affects the speed as well as the accuracy of the detector. For the
experiments presented here a step size of 2 pixels has been used.

Post-processing Since the final detector is insensitive to small changes in trans-
lation and scale, multiple detections will usually occur around each face and some
types of false positives in a scanned image. It is therefore useful to post-process
the detected sub-windows in order to combine overlapping detections into a single
detection.

As a measure of how “good” a detection is, the magnitude of the strong classifier,
|H(x)|, is used as a confidence. If two detections overlap and the relative width or
height of the intersection is more than 10% the detection with highest confidence is
used.
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Chapter 5

Results

In this section results for two different trained face detectors are presented. The first
system consists of one large single strong classifier and the second system uses the
cascade building technique discussed earlier. For the two systems, three detectors
were trained using Real AdaBoost (RAB-N), with N = 4, 8 and 16 bins in the
histogram, respectively. A reference detector using Viola and Jones’s setup with
Discrete AdaBoost (DAB) and decision stumps was trained.

The main objective of the experiments is to demonstrate detection speedup in
comparison with the classical Viola-Jones approach, rather than improvement of the
detection rate per se.

One way for describing the performance of a detector system is by constructing
its ROC (Receiver Operating Characteristic) curve. A ROC curve is created by
adjusting the threshold, θ, for the final stage classifier from +∞ to −∞. A threshold
value of +∞ yield a detector with zero detection rate and false positive rate. By
reducing the threshold, the detection rate and the false positive rate increase. In
effect, a threshold of −∞ is equivalent to removing that layer.

5.1 Test Data Set

The system was tested on the MIT+CMU data set. This data set has been widely
used for comparison of face detectors [11, 14, 19] and consists of three large sets of
images, which are completely distinct from the training sets. Test Set A was collected
by Rowley et al. [11] at CMU, and consists of 42 scanned photographs, newspaper
pictures, images collected from the internet, and digitised television pictures. These
images contain 169 frontal views of faces. Test Set B consists of 23 images containing
155 faces, it was created and used by Sung and Poggio [10] at the AI/CBCL Lab at
MIT, to measure the accuracy of their system. Test Set C is similar to Test Set A,
but contains some images with more complex backgrounds and without any faces,
to more accurately measure the false detection rate. It contains 65 images with 183
faces.

The data set contains several disputable faces. Thus, the results reported in the
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papers differ not only by the detection rates but by a subset used for the algorithm
evaluation. Moreover, no standard evaluation procedure is given and consequently
the results are influenced by the method of successful detection recognition. How-
ever, the results presented below are based on the entire data set of 130 images with
507 faces.

Detection rates are reported in percent, while the false positives are specified by
their absolute numbers in order to make the results comparable with related work
on this data set.

5.2 A Single Strong Classifier

Four large single strong classifiers constructed of 200 features were trained. While a
cascade of strong classifiers is needed to achieve a very low false positive rate for face
detection, a single classifier is easier to analyse for comparison of the effectiveness
of the two boosting algorithms.

The training and validation sets are both composed of 3175 faces and 5000 non-
faces as in section 4.1. The error rates for the training and validation sets of the
different experiments are shown in Figure 5.1.

The following observations can be made from these curves:

1. Given the same number of learned features or weak classifiers, RAB always
achieves lower error rates than DAB for both training and validation.

2. At least for the first 30 weak classifiers, the error rates for the validation set
is lower for RAB than that of DAB on the training set.

3. RAB needs fewer weak classifiers than DAB in order to achieve the same error
rate.

4. Using a finer partition of the feature space; that is, using more bins in the
histogram, yields better error rates.

Figure 5.2 shows ROC curves for the four systems. As we can see, all RAB
systems give better detection rates than DAB. One interesting observation, that we
also noticed on the toy problem in section 2.3, is that RAB with 16 bins, which
reduces the test error best, does not give best performance on the test set.

5.3 A Cascade of Classifiers

This set of experiments compares classification performance for the four cascades
of classifiers. From the ROC curves in Figure 5.3 we see that the performance is
similar for the four systems. Comparing the results with the ROC curves for the
single strong classifiers in Figure 5.2, we see that the accuracy is not significantly
different for RAB, but the speed of the cascaded classifiers are many times faster.
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Figure 5.1: Error rates for the training and validation set for the Real
AdaBoost (RAB–N) and Discrete AdaBoost (DAB). Only results for the
first 30 out of 200 weak classifiers are shown. Experiments were made
with N=4, 8 and 16 bins in the histograms

Figure 5.2: ROC curves for a single strong classifier on the MIT+CMU
test set.

32



CHAPTER 5. RESULTS

Table 5.1: Test results on the CMU+MIT test set.

Stage 1 2 3 4 5 6 7 8 9 10 11

Number of weak classifiers

DAB 10 11 18 23 21 33 37 40 47 71 62

RAB–4 3 5 7 14 15 12 18 21 24 23 31

RAB–8 3 5 6 8 10 13 14 13 19 17 23

RAB–16 3 5 6 9 10 13 13 14 14 14 18

Total number of weak classifiers

DAB 10 21 39 62 83 116 153 193 240 311 373

RAB–4 3 8 15 29 44 56 74 95 119 142 173

RAB–8 3 8 14 22 32 45 59 72 91 108 131

RAB–16 3 8 14 23 33 46 59 73 87 101 119

Number of evaluated sub-windows

DAB 15 971 027 5 072 185 1 956 501 788 091 321 270 132 782 59 495 24 255 11 712 6 281 3 796

RAB–4 15 971 027 4 873 322 2 096 639 938 840 372 891 163 561 67 276 28 963 14 059 7 129 3 938

RAB–8 15 971 027 5 727 715 2 418 409 984 185 410 431 169 671 75 299 35 478 15 577 8 029 4 212

RAB–16 15 971 027 5 702 784 2 228 347 898 097 394 832 177 214 79 173 50 312 21 440 12 277 6 779

False negatives

DAB 0 1 2 2 6 13 26 41 55 69 85

RAB–4 0 0 0 1 4 10 20 26 38 49 67

RAB–8 0 0 1 2 4 7 19 31 40 57 70

RAB–16 0 0 2 2 2 7 10 17 25 37 51

False positives

DAB 4 993 201 1 910 903 763 120 306 876 123 289 52 862 19 733 8 259 3 590 1 494 602

RAB–4 4 805 088 2 059 024 920 571 360 941 155 282 61 971 25 277 11 115 4 746 1 907 734

RAB–8 5 654 265 2 373 000 961 064 396 392 161 322 69 501 31 164 12 206 5 288 2 118 909

RAB–16 5 629 749 2 189 348 875 850 381 133 167 942 72 645 44 753 17 375 8 929 4 051 1 599

1

Table 5.1 compares each stage of the four cascade classifiers in terms of the number
of weak classifiers, the total number of weak classifiers, the number of evaluated sub-
windows and the number of false negatives and false positives on the MIT+CMU
test set.

It can be observed that the complexity of the stages increases gradually, except
for a few small fluctuations. RAB needs fewer weak classifiers at each stage than
DAB and the number of bins in the histogram seems to further reduce the number
of weak classifiers needed, even though the results for 8 and 16 bins are almost the
same for the first 8 stages. In total RAB needs 55− 70% fewer weak classifiers than
DAB, where the higher percentage is for 16 bins in the histogram.

We see that the fewer weak classifiers used at each stage the more regions are
classified as a potential face, which implies higher detection and false positive rates.
To compare the speed of the cascades, the number of weak classifiers evaluated on
the MIT+CMU data set was measured. All regions have to be evaluated by the
first stage classifier. The number of evaluations in the first stage is consequently
a product of the number of scanned sub-windows and the length of the first stage
classifier. The same holds for higher stages, but only regions not rejected by the
previous stages are evaluated. The results for all stages of the cascades are visualised
in Figure 5.4. We see that the number of evaluated weak classifiers is about 60%
fewer for RAB than for DAB, no matter how many bins are used.
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Figure 5.3: ROC curves for a cascade of classifiers on the MIT+CMU
test set.

Figure 5.4: Number of evaluated weak classifiers on the MIT+CMU
data set for four cascades of classifiers.
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Figure 5.5: Examples of three features selected early by AdaBoost. The
first feature measures the difference in intensity between the region of
the mouth and the jaw. The second feature focuses on the observation
that the eye region is often darker than the cheeks. The third feature
compares the intensities in the eye regions to the intensity of the bridge
of the nose.

In Appendix A a selection of the detected faces on the MIT+CMU test set are
presented. The results are for the face detector using Real AdaBoost and histograms
with 8 bins, where the final stage classifier was thresholded using θ = −1.66 (see
Figure 5.3), which yields a detection rate of 78, 5% and 215 false positives. The
three features chosen in the first stage for this system are depicted in Figure 5.5.
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Discussion

6.1 Summary and Conclusions

In this Master’s thesis the Real AdaBoost algorithm has been thoroughly studied.
We have shown how it is derived by minimising an upper bound of the training error
for each round of boosting. We have also seen how simple histograms representing
the training data can be used to assign confidence to the predictions of the weak
classifiers.

The boosting algorithm has been evaluated on the fast frontal face detection
problem. The detection system uses Viola and Jones’s approach and its real-time
performance is attributed especially to the efficient features used, the AdaBoost
learning algorithm and the cascade of classifiers for decision making.

Experiments have been made for histograms with 4, 8 and 16 bins. We have
seen that Real AdaBoost speeds up the classification by minimising the training
error more aggressively than its discrete version. This leads to shorter classifiers
and hence to faster classification. In fact, Real AdaBoost needs only 30 − 45% of
the number of weak classifiers needed by Discrete AdaBoost and the results shows
that the more bins used in the histograms, the fewer weak classifiers are needed.

The shorter classifiers lead to better detection rates but also to more false detec-
tions at each stage of the cascade. Hence, subsequent stages are given a harder task.
However, due to the short classifiers the total number of weak classifiers evaluated
is about 60% fewer, no matter how many bins used.

The reduction of the number of weak classifiers can be important in areas where
the weak classifiers are expensive to compute or to implement, e.g on smart cards
or other special purpose hardware.

6.2 Further Improvements

When Viola and Jones presented their real-time face detector system, it aroused
great interest in the Computer vision community and extensive research has been
performed and further improvements suggested.
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Two improvements which would be interesting to implement and explore are:

An extended set of features Although frontal faces exhibit little diagonal struc-
ture, improvements have been observed by extending the set of Haar-like fea-
tures to also include the set of 45 degree rotated features [7].

Multi-view face detection Stan Li et. al [5, 6] designed a pyramid of detectors
for multi-view face detection. A coarse-to-fine view-partition is used where the
out-of-plane head rotations are partitioned into increasingly smaller subspaces
and a face detector is trained for each view.
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Appendix A

Examples of Detected Faces

In this appendix a selection of faces detected on the MIT+CMU are presented. The
face detector is using Real AdaBoost and histograms with 8 bins. The final stage
classifier is thresholded using θ = −1.66 which yields a detection rate of 78, 5% and
215 false positives. For ease of presentation the images have been resized.
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